Analyzing Software Systems by Using Combinations
of Metrics

Markus Bauer, FZI Karlsruhe*

March 29, 1999

Abstract

Reengineering an object oriented software system requires some analysis
of the existing system. This paper describes, how a combination of complex-
ity and coupling metrics can be used to make such an analysis more focused
and thus more effective: the metrics are used to identify the key classes of a
system, i.e. classes that structure the system and implement its most impor-
tant concepts understanding them and their collaborations is a good basis
for every reengineering task. The paper is intended to be particularly helpful
for practitioners, therefore it focuses on practical experiences that have been
made with various case studies.

Keywords: object orientation, reengineering, software metrics, model
capture

1 Introduction

The ability to reengineer object oriented legacy systems and transform them into
more flexible and extensible systems has become a matter of vital interest in to-
day’s software industry. To allow such a transformation of a legacy system into an
improved flexible system two tasks are particularly important [CDD¥99]:

e model capture: document and understand the existing system, its structure
and its inner workings

e problem detection: identify possible quality or flexibility related problems of
the system

Object oriented software metrics are expected to support these tasks, but in practice
they have only been applied with limited success. Though a vast amount of metrics
have been defined in the past (see for example [CK94], [LH93] or [BK95]) there
is little experience in how to actually use metrics for model capture or problem
detection.

To improve this situation, this paper describes a practical approach to use metrics
in order to help understanding the basic structure and workings of legacy system
and some experiences that were made while applying that approach to real world
C++ applications.

*Forschungszentrum Informatik, Haid und Neu Str. 10 14, 76131 Karlsruhe, Germany;
Internet: bauer@fzi.de; http://wuw.fzi.de/bauer.html

Understanding the structure and the inner workings of a legacy system is an essen-
tial task during any reengineering project, since any improvements to the system
rely on such knowledge. As these legacy system are often large and insufficiently
documented, their source code has to be examined. This is time consuming and
expensive (or even impossible).

It is therefore crucial to know which parts of the system implement its key concepts
because the analysis of the system can then be focused on these important, parts,
thus making the model capture process much more efficient.

2 Owur Approach

In the following, we describe a technique that helps us to discover the important
parts of a system.

First, we observe that these important parts of the system are implemented by very
few key classes. If we are able to identify these key classes and their collaborations,
we have good starting point to learn more about the working of a system.

To identify these key classes, we use two properties that are symptomatic for them:

e Key classes either manage a rather large amount of other classes or use them
in order to implement their functionality. Therefore, these key classes are
tightly coupled with other parts of the system.

e A second property of these classes is that they tend to be rather complez,
since they implement vast parts of the system’s functionality.

For both properties, coupling and complexity, a variety of metrics have been defined
in the past. Thus, to identify key classes it is rather natural to make use of these
metrics: We compute both, coupling metrics and complexity metrics for the system’s
classes and combine the results.

Combining the results can be done in various ways, either formal, for example by
defining a combined metric (as a single formula) or rather informal, for example by
using a bar chart that shows both metrics at the same time (Figure 1).

For our case studies we have used an approach that incorporates a graphical evalu-
ation as well as mathematical calculations, but summarizes the results some more.
This is especially important for the analysis of large systems.

We use a diagram that places the classes in a coordinate system, showing the com-
plexity metric on the first axis, and the coupling metric in the second axis (see
figure 2). This way, we can easily identify the key classes we are interested in: we
just have to pick those classes that are in upper right area of the diagram (see the
grey shaded area in figure 2).

Mathematically, we combine the two metrics by computing the distance d of a class
from the origin of the coordinate system: if z denotes the complexity value of a
class, and y its coupling value, we compute the combined value d as:

i= VTP

In some cases, if the metrics use a very different scale, e.g. the complexity metric
produces significantly higher values than the coupling metric, some normalization
might be required. We could then use the formula

Clas8

Clasd

\lCompIexitMetric Bl Coupling/letric \

Figure 1: Combining metrics by using a stacked bar chart.

Classes that are

tightly coupled Key classes are
with other parts of complex and
the system tightly coupled
with other parts of

% the system
25
20 ¢ Class 1
Coupling
15
Class 4
¢ Class 3
10 *
5 d
%es that
0 i i i i are rather
0 5 10 15 20 complex
Complexity

Figure 2: Graphical analysis of a system.

This combined value allows us to compare classes classes with higher values for d
are better candidates to key classes of the system than classes with lower values for
d.

As we will see in the next section, coordinate systems and tables with combined
metric values d provide a good means to identify the key classes of the system:
classes that represent the important parts of a system.

3 Practical Experiences

We have applied our approach to various case studies written in C++ from different
backgrounds, including academic projects as well as real world industrial applica-
tions. In the following, we describe some experiences we made with our approach
and these case studies.

One of our case studies, the ET++ Application Framework [WG94] is covered in
more detail since it is well documented and publically available, so our results can
be easily reproduced. Two other case studies, code named River and CLEA have
been used to confirm our results.

e ET++ is a framework to facilitate the construction of applications that pro-
vide a graphical user interface.

e River is an application that visualizes water flow data for rivers. Its imple-
mentation is based on Microsoft’s MFC-Framework.

e CLEA (Class Library for Engineering Applications) is both a class library and
a framework that is used to implement a family of applications that support
mechanical engineers. CLEA also relies on Microsoft’s MFC.

Some general purpose data about these case studies is given in the upper part in
table 2.

All case studies have been analyzed with a tool set developed within the FAMOOS
project!, which analyses C4++ code, extracts class declarations, method declara-
tions, variable declarations, method invocations and variable accesses from the code
and stores them into databases. With an SQL-like query language different kinds
of software metrics can be programmed and computed using these databases. (For
a detailed description of the tool set and the metrics supported, see [Mar97]).

To identify the key classes in these case studies using our approach, we have mainly
employed the WMC metric [CK94] as complexity metric and the DA C metric [LH93]
as coupling metric, because we achieved best results with them. The WMC metric
measures the complexity of a class by summing up the McCabe cyclomatic complex-
ities of its methods. The DAC metric measures the coupling of a class by counting
the number of other classes that are used as attributes in the class. Possible alter-
native metrics would include NOM (complexity) and RFC (coupling), see [CK94].

For each case study, we computed WMC and DAC metrics and created the coor-
dinate system — WMC metric vs. DAC metric — as described in the previous
section. For ET++, this coordinate system is shown in figure 3. We observe that
only a few classes have high values for both metrics.

TSee http://dis.sema.es/projects/FAMO0S

DAC

35

30 1
*
25 1
* * *
*
*
20 1 .
*
*
* * *
* * * *
15 ' se o o
* * * * * *
* * L 4
» * * »
* *
10 4 L X XS . . .
e * * * * *
® 00 ¢ o *
B ONGS ¢ o *
AN 60 6 & *
51 (2] .
WO 00 0 600 *
AN W00 ¢ & o » *
SRS ¢ L 4 e
o o * *
0 Hoes ; ; ; ;
0 50 100 150 200 250
WMC
Figure 3: Coordinate system showing WMC and DAC metrics for ET++.

Using the coordinate system, we identified the key classes of the systems by per-
forming the following steps:

1.

Pick candidates for the key classes. Such candidates are classes in the upper
right corner of the coordinate system. (We defined upper right corner as the
rectangle bordered by the third quartiles of both metrics.)?

. Structure the candidates into categories. This should be done to get a bet-

ter overview on the list of candidates and to prepare for the next step. We
structured the candidates by using naming conventions and inheritance rela-
tionships.

Eliminate classes that are not really key classes and that are not that impor-
tant to understand how the system works. We did this by browsing through
the source code.

In table 1 we present some examples for key classes we found by applying this
approach to the ET++ case study.

Table 2 shows some of our measurements for all three case studies. At the bottom,
we present the number of classes that represent candidates for key classes, and the
number of classes that we finally identified as key classes after step 3 above.

Some observations:

For each case study, only about 15 percent of all classes have been identified
as candidates to be key classes. For some basic model capture purposes it is
usually sufficient, to examine only those classes, that have been picked candi-
dates for key classes. Thus, we have drastically reduced the effort necessary
to understand the basic workings of the system.

2The third quartile of a data sample is defined as the smallest value of those 25 percent of the
data points, that have largest values.

| Category || Class || WMC | DAC | d |

Base Object 97 13] 0.6

Class 71 9104

Collection 96 17 | 0.7

Managers Application 86 16 | 0.7

Document 126 14 | 0.7

Dialog 36 13 1 0.5

Menu 75 151 0.6

Views VObject 148 17 1 0.9

View 74 14 | 0.6

TreeView 35 12 1 04

TextView 167 23 | 1.1

Ports Port 150 141 0.8

WindowPort 139 10 | 0.7

XWindowPort 152 29 | 1.1

SunWindowPort 223 24 | 1.3

PostscriptPort 83 151 0.6
| Average values || || 27.5 | 5.9 | 0.3 |

Table 1. Key classes for ET++.

[ET++] River | CLEA
LOC 55 000 14 200 90 000
Classes 356 52 236
avg. WMC 27.5 35.6 21.9
avg. DAC 5.9 6.6 5.9
max. WMC 223 273 222
max. DAC 29 23 35
3rd quartile WMC 32 35 27
3rd quartile DAC 8 10 8
avg. d 0.3 0.3 0.6
max. d 2.3 1.4 6.3
Candidates for key classes || 40 (11%) | 9 (16%) | 34 (14%)
Key classes 29 (8%) | 7 (13%) | 30 (13%)

Table 2: Measurements and results for the case studies.

e After structuring these candidates and eliminating some some less impor-
tant classes, the remaining classes for ET++ covered most of the concepts
described in [WG94], so our approach would have provided us with a good
starting point to understand the system’s structure by looking at the source
code of these candidates.

e For River and CLEA we were able to discuss our results with the developers
of the systems. They confirmed that we have indeed identified those classes
that implement the key concepts of the systems.

e By just looking at class sizes, the list of candidates would have been much
more inaccurate. So our approach to use a combination of metrics is sensible.

4 Conclusions and Further Work

Using a combination of coupling and complexity metrics proved to be a very pow-
erful concept for identifying the key classes of a system. We have therefore shown,
that metrics can be successfully applied for model capture purposes, since they
allow for a focused examination of the system.

It is very probable, that the concept of combining multiple metrics is very promising
in other cases as well. During problem detection, for example, we could use a
combination of complexity and cohesion metrics (for example WMC and TCC) to
identify classes that should be split, because they implement two or more separate
concepts.

Combining metrics that measure the same property of classes in different ways can
be a good idea to make the results more robust (i.e less dependent on the specific
definitions of the metrics). For example a combination of two coupling metrics (like
DAC and RFC) could give better results.

Furthermore we can conclude, that graphical evaluation techniques make the ap-
plication of metrics for the analysis of legacy systems more intuitive and usable,
because they give a concise representation of the systems characteristics. It is
therefore desirable to invest some more research in this area.

References

[BK95] J. M. Bieman and B. K. Kang. Cohesion and reuse in an object-oriented
system. Proc. ACM Symposium on Software Reusability, apr 1995.

[CDD*99] O. Ciupke, S. Demeyer, S. Ducasse, R. Marinescu, R. Nebbe, T. Richner,
M. Rieger, B. Schulz, S. Tichelaar, and J. Weisbrod. The FAMOOS
Handbook of Reengineering. Software Composition Group, University of
Bern, Switzerland, 1999.

[CK94] S. R. Chidamber and C. F. Kemerer. A Metric Suite for Object-Oriented
Design. IEEE Transactions on Software Engineering, 20(6):476 493,
June 1994.

[LH93] W. Li and S. Henry. Maintenance metrics for the object oriented
paradigm. IEEE Proc. First International Software Metrics Symp.,
pages 52-60, may 1993.

[Mar97]

[WG4]

[WGMSS]

Radu Marinescu. The use of software metrics in the design of object
oriented s ystems. Master’s thesis, University PolytechicaTimisoara,
sep 1997.

A. Weinand and E. Gamma. ET++4 a portable, homogenous class li-
brary and application framework. In W.R.. Bischofberger and H.P. Frei,
editors, Computer Science Research at UBILAB, Strategy and Projects,
Proeedings of the UBILAB Conference, pages 66 92. UBILAB, Univer-
sititsverlag Konstanz, September 1994.

A. Weinand, E. Gamma, and R. Marty. ET++ an object-oriented
application framework in C++. In Proc. ACM Conf. on Object-Oriented
Programming Systems, Languages and Applications, ACM SIGPLAN
Notices, page 46, November 1988.

