Support Reengineering by Type Inference
— A Reengineering Pattern®

Markus Bauer

bauer@fzi.de

September 28, 1999

Abstract

Reengineering patterns describe and discuss techniques that support reengineering tasks. They
help a software engineer to understand the structure and the inner workings of a software system, to
identify design problems and to improve the system in order to make it more flexible and extensible.

In this paper we present a reengineering pattern that shows how you can use type inference to
facilitate the reengineering of systems that are written in Smalltalk or a similar dynamically typed
object oriented language.

Keywords: object orientation, reengineering, pattern, type inference, Smalltalk

Introduction

The ability to reengineer object oriented legacy systems and transform them into more flexible and
extensible systems has become a matter of vital interest in today’s software industry. To help software
engineers to do this, the FAMOOS project (see http://dis.sema.es/projects/FAMO0S) develops a
handbook of good reengineering practices and techniques. To present these techniques in a uniform and
easily accessible way a reengineering pattern format was developed.

On the following pages, we introduce a reengineering pattern conforming to an improved version of that
pattern format!. The pattern describes how you can support the reengineering of a system written in a
dynamically typed object oriented language by enriching its source code with type annotations.

*Copyright © 1999 by Markus Bauer, Forschungszentrum Informatik, Haid—und-Neu-Str. 10-14, 76131 Karlsruhe,
Germany. Permission is hereby granted to copy and distribute this paper for the purpose of the EuroPLoP’99 conference
and its proceedings.

1Some patterns following an older version of this format have already been submitted to EuroPLoP ‘98, even more
patterns will show up in the upcoming FAMOOS handbook.



Use Type Inference

Thumbnail

It is hard to understand the structure and the workings of a software system written Smalltalk (or in
any other dynamically typed language) because of the lack of type declarations. Therefore add type
annotations to the program code, which document the system and which can additionally be used by
sophisticated reengineering tools.

Context

Apply this pattern when reengineering systems that are written in Smalltalk or in a similar, dynami-
cally typed programming language, where you have only limited knowledge about the system. Typical
situations could be:

e You have to maintain and/or modify the software system, but you have only limited knowledge
about its inner workings. You are interested to learn, which types of objects of the system are
manipulated by some code your are working on, but this is difficult since you do not have type
declarations in your source code that provide you with that information.

¢ You want to support a reengineering task by some tools, but these tools rely on type information
for the system’s variables and methods. Most reengineering tools rely on such type information.
Examples include (but are not limited to) the Smalltalk Refactoring Browser [RBJ97]? or tools
that calculate software product metrics (like those described in [CK94]).

¢ You want to reengineer or rewrite the system using a statically typed programming language?, but
to achieve this, you need appropriate type declarations for the system’s variables and methods.

Problem

In dynamically typed systems, the lack of static type information (i.e. the lack of type declarations for
variables and method signatures) makes some reengineering tasks difficult or impossible, since such type
information usually represents prominent parts of a system’s semantics.

Example

Consider some code fragments for a dynamically typed application that manipulates drawings. Such an
application might have a class Container for storing some objects. Listing 1 shows a method add that
is used to add objects to the container.

For reengineering purposes we might be interested in an answer to the following question: What kind
of objects can be stored in the container, that is, of what types are the objects, that are passed as
arguments to the add-Method?

2The current implementation of the Refactoring Browser does not infer precise types for the system’s entities though,
it relies on (unprecise) heuristics instead.

3Banking houses and insurance companies, for example, are often interested in replacing existing Smalltalk applications
with statically typed Java or C++ applications.



add: anObject
contents add: anObject.

anObject draw.
2” ”»

Listing 1: Method add in class Container.
Forces

e To learn about the types of objects that are manipulated by some code you are looking at, you
might consider to manually trace the execution of your code and guess on what’s going on in your
system, but for larger systems, this is an infeasable and error-prone task.

e You could also try to capture that information by looking at method and variable names, but in
many legacy systems naming conventions do not exist or do not provide enough information about
the object types and the manipulations that are made with them (see our example above). Even
worse, you can’t be sure that the names do not lead you to wrong conclusions.

e To migrate from a dynamically typed language to a statically typed language, you could apply
approaches that do not rely on type information, like those proposed for the translation of Smalltalk
applications to Java in [EK98]. These approaches simulate Smalltalk’s dynamic type system in
Java. The resulting code, however, is not authentic Java code and hard to understand and maintain.
Additionally such code has the usual shortcomings of untyped code: it is not type safe.

Solution

Find out what types the variables and method parameters have and put this information into the source
code, using type annotations or comments.

In more detail:

1. Perform a program analysis of your dynamically typed object oriented legacy system.

2. Use the results of the program analysis to determine type information for the program’s variables,
including global and local variables, parameters and return values of methods. Based on this type
information, add type annotations to the program’s source code.

3. Use these type annotations to understand how your legacy system works or as additional semantic
information to more sophisticated reengineering tools.

This technique is called type inference, because you infer the type of an object at a certain place in the
code by tracing its way from its creation to the current place.

If we can enrich the code of our example application with type annotations (see listing 2)* by using the
techniques described below we can easily find an answer to the question we asked above: Our Container
holds points, lines, splines, ..., so it has obviously something to do with some geometrical shapes that
make up a drawing.

We learn from this example that type annotations like those given in listing 2 make code much easier to
understand and that they contain valuable information about the inner workings of a system.

4A type annotation for a method is denoted as a comment in the Smalltalk-like code examples and has the form ”

Rx A1 x...x An - X 7, where R, A1 ... An, X are sets containing types (classes of the system). This means, that the
receiver object of a method send can have the types in R, the ith argument object can be of one of the types in A;, and the
result of the message send has one of the types in X. Thus, the method add in listing 2 is used for a Container, accepts a
Point-, Line- or Spline-object as an argument and returns nothing (or self, respectively.)



add: anObject
” { Container} x {Point, Line, Spline,...} = {} ”
contents add: anObject.

anObject draw
” ”

Listing 2: Method add annotated with type information.

Implementation

Type inference ususally can’t be done manually for reasonable large and complex applications. Therfore,
we have to automate the task of computing type information for variables and method signatures.

To implement a tool or other means to get the information, we observe that during the runtime of the
system, type information propagates through the system’s expressions and statements: Upon creation,
each object has a certain type assigned to it, and this type information is spread to all expressions and
statements (including variable and method parameter expressions), that do some operations with the
object. Thus, to infer types for the variables and methods of the system, we need to inspect object
creations and the data flow through the system.

Basically we can do this in two ways: We either can execute the application and collect the type
information we are interested in during its runtime (dynamic type inference) or we can use static program
analysis techniques [ASU86] (static type inference) to analyze the applications source code and compute
how the type information flows through the application’s expressions. We will cover both approaches in
some more detail below.

Dynamic type inference. With dynamic type inference, we modify the application or its runtime
environment, to have it record the runtime type information for us.

1. Determine the most common execution paths through your program, that is, determine the most
common usage scenarios of your legacy system. In some cases you might be able to use already
existing testing scenarios for this. In other cases, determining these common usage scenarios might
be difficult, especially if you don’t know much about the system.

2. Instrument the code with instructions that record the data flow through your system and that
collect the runtime types of the system’s variables. [RBFDDar]| describes how to modify the runtime
libraries of a Smalltalk environment to achieve this with only minor changes to the application’s
code.

3. Run the system and have it execute the most common usage scenarios you collected in step 1.

4. Use the recorded runtime type information to put type annotations into the source code.

Static type inference. With static type inference, we need a tool that has to read in the complete
source code of the application and analyzes it to construct a data flow graph. This is done by representing
the application’s expressions as nodes in the graph, and by modeling the dependencies between them as
edges. The dependencies that are taken into account to construct the data flow graph are given by the
following rules:

1. An assignment var := expr generates a data flow from the right hand side expression expr to the
variable var on the left hand side.



2. A wvariable access generates a data flow from the variable being accessed to the surrounding expres-
sion.

3. A method invocation generates a data flow from the actual argument expressions to the formal
arguments of the invoked method, and from the result of the invoked method to the invoking
expression.

A data flow graph for a short piece of code is shown in figure 1.

2.5@ OO

{Float} {int}
Yy X
X = O; {Float} {Int, Floal}
y = 2.5;
X v;

Figure 1: Data flow graph.

For each node the tool then tries to compute the set of classes the corresponding expression can hold
instances of. It starts by determining type information for the program’s literal expressions and object
creation statements (which are represented as source nodes in the graph) and moves that information
along the edges through the graph. Each node then carries the union set of all type information of its
predecessors. In figure 1, for example, the node for x carries the type information {Int, Float}, since it
depends on the type information of the nodes for y and 0.

Some subtle problems arise, whenever method invocations cause data flows across method boundaries
(as given by rule 3). Such a case is shown in figure 2.

There are some well proven techniques to allow for an analysis which keeps track of these inter-method
data flows in an efficient and practicable way. One of these is Agesen’s Cross Product Algorithm [Age95]°.
The basic idea is to create seperate sub graphs for each method and link all those subgraphs together in
an appropriate and efficient way.

After the graph has been completly built up and all type information has been propagated through it,
the type information associated with the graph’s nodes can be used to annotate the source code of the
application.

Discussion

A problem of using type inference to reveal some information about a legacy system arises from the fact
that we analyze the data flow through an application. To make our approach work, we have to analyze
the complete source code of an executable application (including libraries), or, if we are using dynamic
type inference, we have to execute an adapted version of the system. This might be a problem in some
cases when parts of the source code are not available and/or a runnable version of the system cannot
be produced. Furthermore, frameworks and class libraries cannot be analyzed without application code
using or instantiating them. Then, however, the inferred types are only valid in the specialized context
of the particular application.

5There are other algorithms that also allow the tracking of data flow across method boundaries, for example [PS91],
[OPS92], [PC94], but Agesen’s algorithm is superior to most of these, because it is easy to understand and computes precise
type information in a very efficient way[Age94].



max: b Invocation of max:
(self < b) x := 1 max: 2
ifTrue: ["bl
ifFalse: ["self]

lO 2

{Int} {Int}\
max
{Ing} {Int}
result
/_J {Ing}

—
xO

{int}
Figure 2: Data flow across method boundaries

Static type inference algorithms usually have to overcome some difficulties: static analysis is complex and
the results are often unprecise. Agesen’s static type inference algorithm, as sketched above, addresses
these difficulties in an appropriate way®. However, since the algorithm is very complicated it is difficult
to implement it in a correct way and produce a reliable tool out of it. This is an issue, if you can’t use
one of the already existing tools (see for example [Li98]).

However, once a tool for performing such an analysis has been built, it can be used on other reengineering
projects as well and then it quickly pays of its rather high development costs.

Dynamic type inference has serious limitations when being applied to larger systems: You have to ensure,
that the most important parts of the system are covered by the analysis in a sufficient way, which might
not be feasable for larger systems, at least, if you do not have test cases or usage scenarios available.

Related Reengineering Patterns

Type annotations document the inner workings of a legacy system. We can therefore see type inference
as a technique to improve your knowledge about the legacy system. Thus, this pattern relates with
all other reengineering patterns that describe reverse engineering techniques, i.e. analyses of the source
code of legacy systems to extract additional semantic information and improve the understanding of the
systems.

Also, this pattern is related with the reengineering pattern Missing Technical Documentation, which
describes a set of general techniques to improve the documentation of a software system.”

Known Uses

ObjectShare has used type annotations (like those that can be computed by applying this pattern) to

6A detailed discussion of the algorithm, especially regarding complexity and precision can be found in [Age95] or in
[Bau9s].

"The pattern Missing Technical Documentation is included the FAMOOS handbook’s collection of reengineering pat-
terns. Its thumbnail is given by Improve the understandability of a software system by adding comments to the system’s
source code that provide (higher level) design information.



document large parts of the source code to the Visualworks Smalltalk environment. This emphasizes
that type annotations are of great help understanding source code.

The GOOSE tool set (and related tools) that support the reengineering of C++ applications by visu-
alizing software structures [Ciu97], checking design heuristics [BC98] and calculating software metrics
[Mar97] can analyze Smalltalk applications after type inference is used and the source code is enriched
with type annotations.

The University of Stuttgart, Germany, has developed a tool called Smalltalk Explorer which is used
to explore existing Smalltalk applications. It heavily relies on the type inference algorithm presented
here. Type annotations are used to allow for an easy navigation through unknown Smalltalk code by
documenting which classes are manipulating which other classes and by introducing hyperlinks between
them[Li98].

The type inference algorithm is also used to facilitate a mostly automatic translation of dynamically
typed Smalltalk applications into statically typed Java applications [Bau98]. Since most of Smalltalk’s
concepts can be mapped upon suitable Java concepts the most prominent issue is to infer appropriate
static types for the resulting Java code. This is done by computing type annotations (as described
above) and transforming them into type declarations. In more detail, to map a type annotation to a
type declaration, a class must be found (or created by refactorings), that is a common abstraction to all
classes included in the type annotation.

Acknowledgements

I would like to thank all people who helped me writing early versions of this pattern, in particular Oliver
Ciupke and Benedikt Schulz. Thanks are also due to Jutta Eckstein and Christa Schwanninger who, as
EuroPLoP shepherds, suggested a lot of improvements to the pattern and its structure and taught me
a lot on writing a pattern in general. Further thanks go to Stéphane Ducasse and Sander Tichelaar for
additional comments, as well as to all people who “workshopped” this paper during EuroPLoP’99.

References

[Age94] Ole Agesen. Constrained-based type inference and parametric polymorphism. In Proceedings
of the First International Static Analysis Symposium (SAS ’94), volume 864 of LNCS.
Springer-Verlag, 1994.

[Age95) Ole Agesen. The Cartesian product algorithm. In Walter Olthoff, editor, Proceedings of
the 9th European Conference on Object-Oriented Programming (ECOOP’95), volume 952
of LNCS, pages 2—-26, Berlin, GER, August 1995. Springer-Verlag.

[ASUS86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers — Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, USA, 1986.

[Bau98] Markus Bauer. Reengineering von Smalltalk nach Java. Master’s thesis, Institut fiir Algo-
rithmen und Datenstrukturen, Universtit Karlsruhe, 1998.

[BCI8] Holger Bér and Oliver Ciupke. Exploiting design heuristics for automatic problem detection.
In Stéphane Ducasse and Joachim Weisbrod, editors, Proceedings of the ECOOP Workshop
on Ezperiences in Object-Oriented Re-Engineering, number 6/7/98 in FZI Report, June
1998.

[Ciu97] Oliver Ciupke. Analysis of object-oriented programs using graphs. In Jan Bosch and Stuart
Mitchell, editors, Object-Oriented Technology — Ecoop’97 Workshop Reader, volume 1357
of Lecture Notes in Computer Science, pages 270-271, Jyviskyld, Finnland, March 1997.
Springer.



[CK94]

[EK98]

[Li98]

[Mar97]

[OPS92]

[PC94]

[PS91]

[RBFDDar]

[RBJO7]

S. R. Chidamber and C. F. Kemerer. A Metric Suite for Object-Oriented Design. IFEFE
Transactions on Software Engineering, 20(6):476-493, June 1994.

R. L. Engelbrecht and D. G. Kourie. Issues in translating Smalltalk to Java. In Kai
Koskimies, editor, Compiler Construction 98, volume 1383 of LNCS. Springer, 1998.

Jinhua Li. Maintenance support for untyped object-oriented systems. http://www.
informatik.uni-stuttgart.de/ifi/se/people/1i/, 1998.

Radu Marinescu. The use of software metrics in the design of object oriented s ystems.
Master’s thesis, University PolytechicaTimisoara, sep 1997.

Nicholas Oxhoj, Jens Palsberg, and Michael I. Schwartzbach. Making type inference practi-
cal. In Ole Lehrmann Madsen, editor, ECOOP °92, European Conference on Object-Oriented
Programming, Utrecht, The Netherlands, volume 615 of Lecture Notes in Computer Science,
pages 329-349. Springer-Verlag, New York, N.Y., 1992.

J. Plevyak and A. A. Chien. Precise concrete type inference for object-oriented languages.
ACM SIGPLAN Notices, 29(10):324-324, October 1994.

Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. Technical
Report DAIMI PB - 345, Computer Science Department, Aarhus University, March 1991.

Pascal Rapicault, Mireille Blay-Fornarino, Stéphane Ducasse, and Anne-Marie Dery. Dy-
namic type inference to support object-oriented reengineering in Smalltalk. In Serge De-
meyer and Jan Bosch, editors, Object-Oriented Technology (ECOOP’98 Workshop Reader),
LNCS (forthcoming). Springer-Verlag, 1998, To appear.

Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk. Journal
of Theory and Practice of Object Systems (TAPOS), 3(4):253-263, 1997.



