
Tool Supported  
Software Quality Assessments 

Markus Bauer 
Olaf Seng 

FZI  Forschungszentrum Informatik 
an der Universität Karlsruhe 

VTT Electronics, Oulu, 25 June 2003 



2 

Forschungszentrum Informatik, Karlsruhe 

Overview 

•  About us 
•  Introduction 

–  Software quality 
–  Techniques for tool supported quality assessment  

•  Case studies 
–  SolidTech’s database server 
–  VTT’s eXpert web application 
–  Telecommunication System 

•  Discussion 



3 

Forschungszentrum Informatik, Karlsruhe 

About Us 

•  Over 200 projects per year 
•  About 120 employees, about 100 researchers 
•  Publicly funded foundation, founded  in 1985 

MMRMMR
Mobility	  Management
and	  Robotics

ESMESM
Electronical	  Systems	  and	  
Microsystems

SIMSIM
System	  design	  in	  Mirco-‐
Electronics

SWTSWT
Softwaretechnology

MITMIT
Medical	  
Information	  Systems

Knowledge	  Managemet
WIMWIM

DBSDBS
Database	  systems

BPEMBPEM
Business	  Process
Engineering	  and	  Management

PDEPDE
Process	  and	  Data	  Managments

in	  Engineering

IDSIDS
Interactive Diagnostics-‐
and	  Service	  Systems PROSTPROST

Programm	  Structures

VFWVFW
Contact	  Office	  

for	  Industry	  and	  International	  
Cooperation

MMRMMR
Mobility	  Management
and	  Robotics

MMRMMR
Mobility	  Management
and	  Robotics

ESMESM
Electronical	  Systems	  and	  
Microsystems

ESMESM
Electronical	  Systems	  and	  
Microsystems

SIMSIM
System	  design	  in	  Mirco-‐
Electronics

SWTSWT
Softwaretechnology

SWTSWT
Softwaretechnology

MITMIT
Medical	  
Information	  Systems

MITMIT
Medical	  
Information	  Systems

Knowledge	  Managemet
WIMWIM

Knowledge	  Managemet
WIMWIM

DBSDBS
Database	  systems

BPEMBPEM
Business	  Process
Engineering	  and	  Management

PDEPDE
Process	  and	  Data	  Managments

in	  Engineering

PDEPDE
Process	  and	  Data	  Managments

in	  Engineering

IDSIDS
Interactive Diagnostics-‐
and	  Service	  Systems

IDSIDS
Interactive Diagnostics-‐
and	  Service	  Systems PROSTPROST

Programm	  Structures

PROSTPROST
Programm	  Structures

VFWVFW
Contact	  Office	  

for	  Industry	  and	  International	  
Cooperation

VFWVFW
Contact	  Office	  

for	  Industry	  and	  International	  
Cooperation

 

•  13 research departments, covering a variety of different 
computer science fields 

•  Turnover: 8 Mio. EUR (2000) 



4 

Forschungszentrum Informatik, Karlsruhe 

Bridging the gap... 

Requirements 
Industry 

Technology transfer 

Exploration 

Know-how Academia Stimuli, 
Fundamental problems 

Evaluation Dissemination 
Case studies 
Prototypes 
Methods 

Analysis 
Product evaluation 
System development 

Consulting 
Seminars 
Training 

FZI 



5 

Forschungszentrum Informatik, Karlsruhe 

Program Structures Department 

•  Our vision:  
Software construction is an engineering discipline! 

•  Services we provide: 
–  Design and development of innovative software solutions 
–  Design support, consulting and training 
–  Software assessments, quality management 
–  Support for the evolution of software systems 
–  Software modelling 
–  Compiler construction 
–  Evaluation of development tools and processes 



6 

Forschungszentrum Informatik, Karlsruhe 

PROST – People 
Prof. Dr. G. Goos 

Director 

T. Genssler 
Department Head 

Software Evolution 
Compiler Construction 

M. Bauer 
Vice Department Head 

Component Mining 
Software Evolution 

H. Bär 
Program Analysis 
Web Applications 

C. Andriessens 
Program Analysis 
Software  Quality 

M. Winter 
Components 
Generators 

A. Trifu 
Software  Quality 

Components 

O. Seng 
Software  Quality 

Software Evolution 

V. Kuttruff 
Software Transformation 

Generators 



7 

Forschungszentrum Informatik, Karlsruhe 

Topics and Projects 
Web-based Computing 

proSoft, IMPROVE, 
QBench 

FAMOOS, TROOP, 
TOCODA, App2Web 

App2Web, Vivian, JiniLAB 

SPI & 
Software Quality 

Software Evolution 

Compiler Construction 
DD2DTM, aXMLerate, Inject/J 

Lazy XML evalutation 

Software Engineering 
Methodology  

PECOS, GeCoRi, CompoBench 
MODALE 



8 

Forschungszentrum Informatik, Karlsruhe 

Our Partners and Customers 

Object Technology Intl.   

  



9 

Forschungszentrum Informatik, Karlsruhe 

Our Know-How in Commercial Products 

•  TogetherSoft Together/J 
–  Design pattern technology, metrics support 

•  Telelogic AuditSuite (aka. SEMA Audit) 
–  Fact extraction, metrics for OO-systems 

•  CAS genesisWorld (Groupware System) 
–  LDAP server, Windows CE synchronization, SyncML 

module 

•  Bundesanstalt für Wasserwirtschaft 
–  Rheingold (Analysis and visualization of hydraulic data) 



10 

Forschungszentrum Informatik, Karlsruhe 

Project Reference TROOP 
•  Tool supported software restructuring using 

design patterns 
•  Integration the technique into the CASE 

tool Together  
•  Training on OO and design patterns 
•  Partners:  

–  CAS (User),  
–  Object International (now: TogetherSoft) 

"In nine years of reviewing (European) Commission projects, this is the 
closest I have seen to a textbook example of how the process should work. 
In less than two years, an innovation has moved from being a doctoral 
dissertation to being embodied in a commercial CASE tool, having been 
rigorously evaluated in the development of a commercial software along the 
way.“ 

  Trykve Renskaug, 1999, TROOP Final Review 



11 

Forschungszentrum Informatik, Karlsruhe 

Our Focus Today: Software Quality 

•  Our goal:  
To construct high quality software! 

•  This sounds good, but: 
1968: NATO proclaims the software crisis: software 

systems have bad product quality and cause 
unreasonably high maintenance costs! 

1994: IBM: Survey on large software projects with 24 IT 
companies – 88% of the software systems require a 
major redesign!  

•  Software quality is (still) an issue! 



12 

Forschungszentrum Informatik, Karlsruhe 

Software Quality 

•  “Quality is, if the customer returns, and not the 
product”. (Hans-Helge Stechl, board member, BASF) 

•  External quality = customer‘s perspective: 
–  Ease of use 
–  Performance 
–  Reliability 

•  Internal quality = developer‘s perspective: 
–  Good design 
–  Understandability, maintainability 

•  Good internal quality is a requirement for good 
external quality! 



13 

Forschungszentrum Informatik, Karlsruhe 

Why do we have quality problems? 

•  Requirements for software systems are difficult to analyse, 
requirements change („law of constant change“) 
–  Gap between domain experts and software experts  
–  Long software life cycles 
–  Need to adapt towards new usage scenarios 

⇒ Software structures erode... 

•  Time pressure during development 
•  Lack of developer know-how 

System t 
System t1 System t2 

Enhancements Enhancements 



14 

Forschungszentrum Informatik, Karlsruhe 

Good Software Design? 

•  A primary goal of good design is to contribute to 
low development and maintenance costs.  

•  Good design is a compromise. It should be 
simple and it should be flexible. 

•  Design is bad if it is unnecessarily complicated or 
inflexible. 

•  Good design (internal quality) has often positive 
effects on other quality factors (external quality: 
e.g. performance, stability,...)! 



15 

Forschungszentrum Informatik, Karlsruhe 

What does that mean? 

Principles of „good design“: 
•  Modularity:  

Reduce the complexity of the system; 
decompose it into manageable units 
(→subsystems) 

•  Encapsulation:  
Separate interfaces from implementation 
(→interfaces) 

•  Abstraction:  
Create simplified views on the  
concepts of your application domain  
(→data types, classes) 

 
 



16 

Forschungszentrum Informatik, Karlsruhe 

Measure design quality? 

•  Why do we want do do this? 
–  Tom De Marco:  ''You cannot control what you cannot 

measure.'' 
–  Clerk Maxwell: ''To measure is to know.'' 
–  Lord Kelvin: ''The degree to which you can express 

something in numbers is the degree to which you really 
understand it.'' 

•  How? 
–  Use software metrics and check design rules or 

guidelines! 
–  Identify architecture violations, check dependencies, 

measure coupling, cohesion and complexity properties 



17 

Forschungszentrum Informatik, Karlsruhe 

Tool support for quality assessments 

Design-
DB 

Source 
code 

Fact extraction 

Abstraction Visualisations 

Problematische 
Fragmente
Problematische 
Fragmente

Problem detection  
using heuristics 

Metrics 



18 

Forschungszentrum Informatik, Karlsruhe 

Fact Extraction 

•  Objective  
–  An abstract, semi-formal model of the system  
→ „design database“ as a foundation for further 
analyses 

•  Techniques:  
–  Compiler techniques 
–  Graph theory to abstract the  

design database 
•  Problems:  

–  Programming language  
issues (C/C++: macros!) 

–  Incomplete or defective  
source code 

Subsystem 

Method Class 

contains 

returns 

hasParameter 

contains 

definesAttr 

inherits calls definesMethod 

accesses 
castsTyp 



19 

Forschungszentrum Informatik, Karlsruhe 

Visualisations 

•  Objective:  
Use the fact that a picture may 
say more than a 1000 words! 
Visualisations help to grasp 
complex structures.  

•  Usage Scenarios: 
–  Understand architectures 

and structures 
–  Check dependencies 

(layered architecture, 
framework vs. application 
code)  

 



20 

Forschungszentrum Informatik, Karlsruhe 

Abstraction 

•  Objective:  
Improve the design database, 
generate facts that provide additional 
information to developers 

•  Techniques: 
–  Filtering 
–  Grouping / Aggregation of low level 

elements to high level elements 
 

 

 
A

m2

m1

B

n1

n2

n3

A

B

ruft

Example: Group 
methods to classes 
or operations with 
abstract data types 



21 

Forschungszentrum Informatik, Karlsruhe 

Software Metrics 

•  Objective: 
–  Discover weak spots 

•  Examples: 
–  Complexity Metrics: May point to hard to maintain parts 
–  Coupling Metrics: Identify fragile classes 
–  Cohesion Metrics: Identify classes that do not represent 

suitable abstractions (one concept per class) 
 

class A 
int attribute1; 
int attribute2; 
int attribute3; 
int attribute4; 

void method1() {} 
void method2() {} 

class A 

class ? 

int attribute1; 
int attribute2; 
void method2() {} 

int attribute3; 
int attribute4; 
void method1() {} 

Client 1 

Client 2 

Client 3 

1.  TCC: Class A has low 
cohesion 

2.  Analysis of client code: 
Class A is used with two 
different usage patterns => 
it implements two separate 
concepts 

3.  Class A can be split 



22 

Forschungszentrum Informatik, Karlsruhe 

Quality Management Using Metrics 

•  Quality Models 
–  Objective: Mapping between 

quality factors and metrics 
–  Example: Factor-Criteria-

Metrics 

•  Process Models 
–  Objective: Goal-driven 

measurement und usage of 
data 

–  Example: Goal-Question-
Metric  



23 

Forschungszentrum Informatik, Karlsruhe 

Running Design Queries 

•  Objectives: 
–  Find artefacts with certain structural properties 
–  Problem detection using common design heuristics 
–  Architecture checks, enforcing design guidelines 

•  Example: „Super classes should not know subclasses!“ 

Source
code

Source
code Design

information
Design

information

Foo

Bar

...

Query 
language

Query 
language

% Base classes should not have 
knowledge about
% their descendants
knowsOfDerived (Class, 
DerivedClass) :-

...
...

Query

Transfor-
mationParsing Analysis

Problem structure

Source
code

Source
code Design

information
Design

information

Foo

Bar

...

Foo

Bar

...

Query 
language

Query 
language

% Base classes should not have 
knowledge about
% their descendants
knowsOfDerived (Class, 
DerivedClass) :-

...
...

Query

Transfor-
mationParsing Analysis

Problem structure Problematische  
Fragmente 
problematic 
spots 



24 

Forschungszentrum Informatik, Karlsruhe 

Examples for Design Heuristics 

Classes: 
•  Classes should not 

depend on subclasses 
•  Use inheritance only for 

polymorphism 
•  Avoid unused inheritance 

(Keep your inheritance 
hierarchy simple) 

•  No bottleneck classes 
•  No god classes 

Subsystems: 
•  Lean, well defined  

subsystem interfaces 

•  No fragile classes in 
interfaces 

•  Classes in interfaces should 
not depend on (too many) 
classes in other subsystems  

•  Decoupling of subsystems 

•  No cyclic inheritance 
between subsystems 



25 

Forschungszentrum Informatik, Karlsruhe 

Identifying Duplicated Code 

•  Objective: 
–  Detect code fragments which have been 

copied/cloned from other locations 
–  Duplicated code is hard to maintain 

•  Code size increases, much code to read 
when maintaining the system 

•  Bug fixes will usually fix only one version 
•  Often: Factoring out duplicated code into a 

reusable method improves understandability  

•  Techniques: 
–  Simple line based pattern matching + „clustering“ 
–  Language independent 
–  Possible extension: Identify „fuzzy“ clones 

File 1

File 2

File 3

File 1

File 2

File 3



26 

Forschungszentrum Informatik, Karlsruhe 

Working with Components 

•  Problem: How to deal with component infrastructures?  
–  System dependencies are hidden by the run-time 

environment 
–  Source code is „polluted“ by infrastructure related code 

•  Solution: Apply abstraction techniques  
(Filter and aggregation operations on the design database) 

Stub Skel 

Client Impl. 

ORB 

Client Server 
CORBA- 

Call 



27 

Forschungszentrum Informatik, Karlsruhe 

Analyse Component Structures (I) 

•  Idea:  
–  Compute an ideal decomposition which minimizes 

coupling and maximizes internal cohesion of 
components/subsystems 

–  Compare this ideal decomposition with the 
component/subsystem structure declared by the 
designers 

•  Technique: Represent the system‘s structure as 
a graph 
–  Classes and modules = nodes 
–  Dependencies = weighted edges 

•  Inheritance 
•  Calls 
•  Variable accesses and other type dependencies 

A 

B Klasse BKlasse A
2

1

4 2

Klasse BKlasse A
2

1

4 2

9 

Klasse A 

Klasse B 

5 



28 

Forschungszentrum Informatik, Karlsruhe 

Analyse Component Structures (II) 

•  Compare clusters with decomposition given by 
the designers 

•  In the future: combine this with checks for 
architectural styles/patterns/rules  

•  Compute clusters 
–  Foundation: algorithms from data mining 
–  Greedily group nodes according to their coupling 



29 

Forschungszentrum Informatik, Karlsruhe 

Tool Supported Refactoring 

•  Objectives: 
–  Improve previously identified weaknesses 
–  Systematic and automated refactoring of a system‘s 

structure 
–  Reduction of error-prone hand-made code changes 

Supported transformations: 
1.  Basic refactorings:  

Create, move, rename  
classes, methods,...; insert new code  
fragments 

2.  Complex transformations: 
e.g. introduction of design patterns 

3.  Scripting environment for user specific code 
changes for Java available as plugin for Eclipse 



30 

Forschungszentrum Informatik, Karlsruhe 

Tool support 

•  FZI‘s tool prototypes : 
–  GOOSE: Fact extraction, design heuristics, metrics 
–  Echidna: Software visualization 
–  PRODEUS: Metrics 
–  JAMES: Analysis of components 
–  Recoder, Inject/J: Software transformation 

•  FZI‘s Know-How is available in commercial products: 
–  Object International Together Enterprise Edition – Software 

transformation, metrics 
–  Telelogic Audit Suite, SEMA Audit –  

Fact extraction, metrics for oo-systems  



31 

Forschungszentrum Informatik, Karlsruhe 

Coffee Break 

After the coffee break: 
•  Examples from three case studies in order to 

illustrate the concepts 



32 

Forschungszentrum Informatik, Karlsruhe 

Case Studies 

•  Numerous software assessments (1998 - today):  
ABB, DaimlerChrysler, IBM, Nokia, Debis, SOLID 
Technologies, Telekom Deutschland, VTT 

•  Systems from research labs 
ET++, 65 kLOC, C++, 770 classes 
eXpert web application, 5 kLOC, 16 classes, Java, JSP (�)  

•  Engineering software 
150 kLOC, C++/DCOM 

•  Telecommunication software 
500 kLOC, C++, C, Assembler  
2 MLOC, C,C++ 
1 MLOC C++, 120 kLOC Java, CORBA (�)  
20 MLOC, 120 kLOC, Chill 

•  Contract management for an insurance company 
1MLOC, Java/EJB, 6000 classes 

•  Database engine for embedded systems 
1MLOC, C, 28 subsystems, ~300 complex data types, 14.000 functions (�) 



33 

Forschungszentrum Informatik, Karlsruhe 

Case Study 1: SolidTech‘s DB server 

•  You will see typical steps and techniques used in 
a tool supported software assessment 

•  Techniques 
–  Architecture and dependency analyses 
–  Assessment of code complexity, coupling and 

encapsulation 
–  Analysis of data objects and functions 



34 

Forschungszentrum Informatik, Karlsruhe 

Scope of the Assessment at SolidTech 

Objectives:  
–  Put the theory into practice for Solid‘s benefit! 
–  Assess the quality of one of Solid‘s database 

products 
 

Case study: 
–  28 subsystems,  

1347 files,  
~1.000.000 LOC C 

–  14000 functions 
–  Core part:  

274 data types 

Solid
EmbeddedEngine

Solid 
SmartFlow

Real Time OS
ChorusOS, iTRON,  

OSE, QNX, RTLinux, 
SymbianOS VxWorks

Middle-Tier OS
Linux, FreeBSD, 

NetBSD, Windows 
NT, Windows CE

Host OS
Solaris, AIX, HP/UX, 

Tru64, Windows
OS Support

Solid
FlowEngine

ODBC JDBC SA Interfaces

Micro

Diskless

HSB

Options

Library

Solid
EmbeddedEngine

Solid
EmbeddedEngine

Solid 
SmartFlow

Solid 
SmartFlow

Real Time OS
ChorusOS, iTRON,  

OSE, QNX, RTLinux, 
SymbianOS VxWorks

Middle-Tier OS
Linux, FreeBSD, 

NetBSD, Windows 
NT, Windows CE

Host OS
Solaris, AIX, HP/UX, 

Tru64, Windows
OS Support

Real Time OS
ChorusOS, iTRON,  

OSE, QNX, RTLinux, 
SymbianOS VxWorks

Real Time OS
ChorusOS, iTRON,  

OSE, QNX, RTLinux, 
SymbianOS VxWorks

Middle-Tier OS
Linux, FreeBSD, 

NetBSD, Windows 
NT, Windows CE

Middle-Tier OS
Linux, FreeBSD, 

NetBSD, Windows 
NT, Windows CE

Host OS
Solaris, AIX, HP/UX, 

Tru64, Windows

Host OS
Solaris, AIX, HP/UX, 

Tru64, Windows
OS Support

Solid
FlowEngine

ODBC JDBC SA Interfaces ODBC JDBC SA Interfaces

Micro

Diskless

HSB

Options

Library

Micro

Diskless

HSB

Options

Library



35 

Forschungszentrum Informatik, Karlsruhe 

Assessment: Typical Steps (I) 

•  Check for architecture violations 
–  Define and check rules for dependencies between 

subsystems 
Example: shouldNotDependOn('sputsrv/dbe',X) :- 
   not(isUtilityLayer(X)). 

•  Check for dependency bottlenecks and cycles 
–  Bottlenecks and cycles hinder understandability and 

maintainability 
–  Heuristic applies to subsystems and to data types 

Bottleneck Cycle 



36 

Forschungszentrum Informatik, Karlsruhe 

Assessment: Typical Steps (II) 

•  Measurement of coupling, encapsulation and 
complexity of subsystems and complex data 
types 
–  Coupling:  

High coupling between components  
è System may be hard to understand and to maintain 

–  Complexity: 
High internal complexity (complex control flow)  
è Component is difficult to understand, error-prone 

–  Complex components should be well encapsulated 
è low coupling, lean interfaces 

•  Measurement of complexity and call 
dependencies of functions 



37 

Forschungszentrum Informatik, Karlsruhe 

Results from SolidTech‘s Casestudy 

•  Architectural violations: 
–  Architectural style: layered architecture 
–  Only a very few violations of the dependency rules  

(= forbidden dependencies between subsystems) 

•  Bottlenecks: 
–  Some, most of them uncritical  

(and possibly unavoidable) 

•  Cycles: 
–  Very few cycles, most of them uncritical  



38 

Forschungszentrum Informatik, Karlsruhe 

0 
10000 
20000 
30000 
40000 
50000 
60000 
70000 
80000 
90000 

100000 

0 2000 4000 6000 8000 
Complexity (CFG) 

C
om

pl
ex

ity
 (L

O
C

) 

Core 

Subsystems: Coupling and Complexity Results 

•  Good: Mostly low coupling between subsystems,  
reasonable complexity for most subsystems 

•  Some parts in Solid‘s code (Core) are complex but well 
encapsulated 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 

Subsystem pairs 

C
ou

pl
in

g 

Coupling values  
involving Core 

Utility subsystems 

Coupling Complexity 



39 

Forschungszentrum Informatik, Karlsruhe 

Complex Data Types 

•  Solid: Procedural programming in C, OO-style thinking:  
Data types (C structs)  
–  model important concepts of the application domain 
–  logically group data and corresponding operations/functions 

•  Use abstraction techniques to apply design queries to 
data types: 
–  Infer complexity and coupling properties from individual 

operations/functions on data types  
–  Heuristic: An operation is associated with a data type by 

naming conventions and first parameter type 
–  Apply design queries on data type objects to compute 

complexity, coupling and check for guidelines (bottlenecks, 
cycles) 



40 

Forschungszentrum Informatik, Karlsruhe 

Data Types: Complexity and Coupling Results 

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

CF complexity

LO
C

dbe_trx_t

dbe_bnode_t

dbe_cache_t

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

CF complexity

LO
C

dbe_trx_t

dbe_bnode_t

dbe_cache_t

dbe_trx_t

dbe_bnode_t

dbe_cache_t

0

20

40

60

80

100

120

140

160

180

200

ADT pairs

C
ou

pl
in

g Coupling values for
dbe_trx_t, dbe_db_t

0

20

40

60

80

100

120

140

160

180

200

ADT pairs

C
ou

pl
in

g Coupling values for
dbe_trx_t, dbe_db_t

•  Complexity analysis: 
Good: Only a few data types 
have high complexity values 

•  Coupling: 
Good: Only a small number of 
data types are involved with 
high coupling 

•  Problems: 
–  Some data types 

(dbe_trx_t) are complex 
and tightly coupled 

–  They represent central 
concepts; probably this 
cannot be avoided  



41 

Forschungszentrum Informatik, Karlsruhe 

Analysis of functions 

•  Complexity analysis: similar results as with data types 
•  Other things to check:  

Recursion chains and number of function parameters : 
–  Recursion chains: series of function calls that make a loop 
–  Long chains: probably not created on purpose; might (in rare 

cases) lead to infinite loop of function calls, potentially causing 
memory exhaustion, process-abortion,... 

–  Number of parameters: usage gets more complex as number of 
parameters increase 

•  Results :  
–  Recursion chains:  

Solid: Good results: few chains, max. length: 7; 
Mozilla: No so good: more chains, max. length: 114 

–  Number of parameters: 
Results OK, but some weaknesses in API-like parts 



42 

Forschungszentrum Informatik, Karlsruhe 

Verdict on SolidTech‘s Code 

•  Bottom line: SolidTech‘s database server code 
seems to be in a very good shape 

•  Good: 
–  Consequent usage of complex data types improves 

encapsulation and abstraction properties 

•  Interesting findings for SolidTech: 
–  Some parts in the server‘s core are highly complex 
–  But: these parts have been well encapsulated 
–  A few minor design flaws have only local effects and 

can therefore be easily removed 



43 

Forschungszentrum Informatik, Karlsruhe 

Case Study 2: Web Application 

•  VTT‘s eXpert system  
– a web-based knowledge store 

•  Server classes of the web application in Java: 
–  16 classes, 7 (8) test classes 
–  ~ 5100 LOC, 173 methods 

•  Techniques: 
–  Complexity measurements 
–  Test coverage for complex parts 
–  Comment density 
–  Checking of design heuristics 
–  Duplicated code analysis 



44 

Forschungszentrum Informatik, Karlsruhe 

Complexity Measurements 

•  Complex code 
–  is hard to understand 
–  is hard to maintain  
–  should be carefully tested 
–  should be hidden by encapsulation 

•  Types of measures used within assessment 
–  LOC: not including comments 
–  Control flow: similar to McCabe 

•  High values may point to problematic spots in the 
system 



45 

Forschungszentrum Informatik, Karlsruhe 

Complexity - Classes 

•  XFile, XFolder, XKeyword are large, complex 
•  Good: XFolder seems to be tested well 
•  Complexity ratio is very homogenous 
•  Maintainability OK, since there are no classes with extremely 

complex and compact code 

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400

LOC

CF
 C

om
pl

ex
ity

XFolder 

XKeyword 
XFolderTest XFile 



46 

Forschungszentrum Informatik, Karlsruhe 

Complexity - Methods 

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160

LOC

CF
 c

om
pl

ex
ity

XFolder.moveSelectedToFolder XFolder.copySelectedToFolderWork 

XFolderTest.testNewGetDeleteEditFiles 

•  XFolder/XFolderTest: 
-  copy/moveSelectedToFolder have high relative complexity 
-  Test methods (testCopyMoveFolder...) are complex and large 
-  testNewGetDeleteEditFiles is relatively simple 
-  Relative complexity:  0.10 (compared with JHotDraw: 0.23) 

XFolderTest.testCopyMoveFolder... 



47 

Forschungszentrum Informatik, Karlsruhe 

Test Coverage 

•  Number of test methods proportional to LOC (or CF 
complexity) 

•  XWorkSpace, DBConn are „well tested“ 
•  XStats‘ test coverage is below average 

0

200

400

600

800

1000

1200

1400

0 5 10 15 20

LO
C

0

2

4

6

8

10

12

14

16

Te
st

 m
et

ho
ds

LOC

Number of test
methods

XWorkspace 
DBConn 

XStats 



48 

Forschungszentrum Informatik, Karlsruhe 

Comment density 

•  Comment density homogenous: 20-30% 
comments 

•  In comparison with JHotDraw: 26% average 
density, but high variation 

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400

LOC

Co
m
m
en
ts

XKeyword 

XFolder 



49 

Forschungszentrum Informatik, Karlsruhe 

Checking Design Heuristics 

Base classes should not know anything about their 
derived classes  + 

Frequently used classes should be stable  
(in-degree > 5, out-degree> 3) 

+ 

Do not turn an operation into a class   + 
Divide large classes, containing more than 25 
methods  

XFolder 44 - 
19 get()/set() 

Unused Inheritance   Next Slide 
Inheriting same class twice N/A 

Avoid multiple inheritance N/A 



50 

Forschungszentrum Informatik, Karlsruhe 

Unused Inheritance 

•  Detect inheritance, which is never used for the 
sake of polymorphism 

•  Interface XItem is not used explicitly 

•  Discussion: 
–  Analysis used only server code 
–  JSP code using the server code was not analysed 
–  Consequence: probably a false alarm, if XItem is used 

in JSP or other client code. 

XFile 

XItem 

XFolder 



51 

Forschungszentrum Informatik, Karlsruhe 

Code Duplication 

•  Observation: 
–  More than 60 cloned 

blocks (with length >5) 
–  Largest clone: 36 lines 
–  Many clones involve 

XFile, XFolder. 

•  Discussion:  
–  For a system that 

small, this is quite a 
high amount of code 
duplication 

–  Much code duplication 
in test cases 

0

10

20

30

40

50

60

70

2 3 4 5 6 more

# Instances 

C
ou

nt

0

5

10

15

20

25

30

5 6 7 8 9 10 11 12 13 14 15 more

# Lines per Clone

C
ou

nt



52 

Forschungszentrum Informatik, Karlsruhe 

Detailed Analysis 

•  High duplication between XFolder and XFile 
•  Duplicated blocks (with length > 10): 

•  Suggestion: 
–  Move duplicated code into common super class 
–  Maybe: Transform Interface XItem into a abstract class 

36 XFile.java(37-78) XFolder.java(48-90) getOrderByClause
29 XFile.java(488-520) XFolder.java(1096-1129) getName, getOwner, getRootID, getUpdated
21 XFile.java(443-466 XFolder.java(1059-1082) toString, getDescr
18 XFolder.java(625-644), XFolder.java(827-846)

18 XFolder.java(292-309), XFolder.java(393-410)

15 XFile.java(315-331), XFolder.java(663-679) large chunks from checkFileExists
13 XFolder.java(330-342), XFolder.java(423-435)

12 XFile.java(283-294), XFile.java(342-353)
11 XFile.java(554-564), XFolder.java(1176-1187) parts from textSearch
11 XStats.java(163-175), XStats.java(219-231)
11 XFile.java(531-541), XFolder.java(1152-1163) parts from textSearch

XFile

XItem

XFolderXFile

XItem

XFolder



53 

Forschungszentrum Informatik, Karlsruhe 

Verdict on VTT‘s eXpert Code 

•  Good: 
–  good design concepts 
–  extensive set of test cases 
–  complexity values OK 

•  Chances for improvement: 
–  „Bad smells“ in XFolder, XFile (key concepts of the 

server!) 
–  Code duplication 

•  Discussion: 
–  Is code duplication a consequence rapid prototyping?  

(Get it to run first, then worry about refactoring!) 



54 

Forschungszentrum Informatik, Karlsruhe 

Case Study 3: Telecom System 

•  Network management software  
–  Technologies: Java, C/C++, CORBA,  
–  Size: approx. 1 Mio LOC 

•  Lessons Learned:  
–  One fundamental design flaw often has numerous 

symptoms – many analysis techniques reveal 
weaknesses!  

–  It is often difficult to find out the cause of the flaw! 
–  After you‘ve done that, removing the flaw is rather 

simple! 
  



55 

Forschungszentrum Informatik, Karlsruhe 

Weak Spot – Situation 

•  ConfigFile defines operations (e.g. 
initConfig()), which read parameters 
from a file in order to configure 
processes.  

•  Process inherits from ConfigFile 

+initConfig(

ConfigFile

Process

+initConfig(

A

+initConfig(

B

+initConfig(

C

+initConfig(

D

+initConfig(

E

•  Special types of processes A to E overwrite initConfig(): 
–  C and E‘s implementation of initConfig() is empty 
–  A, B and D‘s implementations of initConfig() are very similar to the 

implementation in ConfigFile (dode duplication!); they are quite 
complex. 

•  Client code always uses the interface of Process; ConfigFile is 
never used! 

•  (initConfig() contains case statements on types A, B and E) 

calls 



56 

Forschungszentrum Informatik, Karlsruhe 

Weak Spot – Resolved 

•  We now have configurable and non-configurable processes 
•  Inheritance is now semantically OK: Specialization 
•  Common functionality of initConfig() in A, B and D: 

–  Implementation outline (template) in ConfigurableProcess 
–  Hook methods for specific variation of the behaviour  (Template 

Method Pattern) in A, B, D 
•  Reading the configuration file can be delegated to ConfigFile 

Process

+initConfig()

ConfigurableProces

+initConfig(

A

+initConfig(

B

C

+initConfig(

D

EConfigFil

calls 



57 

Forschungszentrum Informatik, Karlsruhe 

Lessons Learned 

•  Tool supported quality assessment often lead to surprising 
results 

•  Interpreting findings is like a puzzle – after a while, you get 
a pretty good picture about the quality of a system: 
–  Critical spots affected by many metrics/heuristics often point 

to severe design problems 
–  Bad results may not be that critical! 

Example: High subsystem complexity is not a problem, if the 
subsystem is well encapsulated 

•  Analysis techniques give only hints – an experienced 
developer still has to inspect and evaluate the findings 

•  Architectural rules + company specific style guides help to 
preserve a system‘s quality 



58 

Forschungszentrum Informatik, Karlsruhe 

Benefits of Software Assessments 

•  Regular assessments help to keep your system’s 
quality under control 

•  External experts can provide new perspectives 
on a system and its quality 

•  Quality assessments may stimulate discussions 
among developers about quality and possible 
improvements  
=> first steps to a quality aware company! 

•  Quality workshops help to build up developers’ 
intuition about good design 

•  Demonstrate, that your company is quality 
aware! 



59 

Forschungszentrum Informatik, Karlsruhe 

Are you interested? 

Our offer: Tool supported assessments of your software 
Features: 
•  Two experts from FZI thoroughly inspect your Java, C or C++ 

code for 5 working days (peer work!) 
•  Confidentiality guaranteed, on-site work at your company 
•  Workshop to discuss and analyse the assessment results with 

your developers 
Costs: 
•  10 person days for the assessment 
•  Travel + accommodation costs 
•  Optional: 3 person days for a detailed quality report 
•  (Some developer resources at your side, e.g. for the workshop) 



60 

Forschungszentrum Informatik, Karlsruhe 

Our Personal Experience... 

•  The structure of your software system is a key factor to it‘s 
success! 

•  KISS: Keep it simple, stupid! (A. Tanenbaum) 
Whenever you have the feeling that something is 
complicated, simplify it! 

•  Use decomposition to reduce the complexity! 
Miller‘s Law: A good structure should allow you to keep 
only seven (+/-2) things in mind at one time. 

•  Name artefacts meaningfully! 
If you cannot think of a suitable name for a concept, you 
have not properly understood it (or it is not a valuable 
concept at all)! => Rethink it! 



61 

Forschungszentrum Informatik, Karlsruhe 

Contact 

For more information contact: 

Markus Bauer, <bauer@fzi.de> 
Department PROST 
FZI Forschungszentrum Informatik 
Haid-und-Neu-Str. 10-14 
76131 Karlsruhe 
http://www.fzi.de 
Phone: +49 721 9654 630 
FAX: +49 721 9654 609 


