
Combining Clustering with Pattern Matching for Architecture
Recovery of OO Systems

Markus Bauer and Mircea Trifu
FZI Forschungszentrum Informatik

Karlsruhe, Germany
{bauer, mtrifu}@fzi.de

1 Introduction

This work is concerned with recovering the architecture
of an object-oriented software system based on informa-
tion extracted from the source code. Over the years, sev-
eral automatic techniques to recover subsystem decompo-
sitions have been proposed, such as clustering techniques
or pattern-matching techniques, however none of them has
the desired precision. The resulting decompositions are ei-
ther not meaningful to a software engineer or they cover
only pieces of the whole system ([3], [4]).

2 The Approach

In this paper, we propose an approach that combines clus-
tering with pattern-matching techniques to recover com-
plete and meaningful decompositions. Pattern-matching
is used to identify architectural clues — small structural
patterns that provide semantic information about the de-
pendencies found between a system’s entities. These clues
are then used to compute an adaptive inter-class similarity
measure which is then used by a clustering algorithm to
produce the final system decomposition. In essence, the
proposed approach tries to capture as much as it can from
the original structure and then fill in the rest of the puzzle
by imposing a suitable structure so as to minimize the cou-
pling between the resulting subsystems and maximize their
internal cohesion. Coupling and cohesion are expressed in
terms of inter-class relationships and usage.

Our approach consists of five phases: Fact extraction,
Architectural clue gathering, Couplings adaptation, Com-
paction and Clustering.

The purpose of the Fact extraction phase is to construct
an object model of the source code in order to ease access
to the information contained in it. The underlying meta-
model1 contains all the major syntactic elements and the
interactions specifiable in a typical OO language such as:
classes, methods, attributes, inheritance, aggregation, ac-
cess, call, etc.

In the second phase, called Architectural clue gather-
ing, the source model is decorated with semantic infor-
mation. The information is incorporated in the model as
annotations called architectural clues. One must point out

1For our meta-model we use MeMoJ: a metrics oriented meta-model
for structural analysis of Java code developed at “Politehnica” University
of Timişoara by Radu Marinescu, Daniel Raţiu and Mircea Trifu.

that the information added in this phase is not essentially
new. It is extracted from the already constructed source
model by a set of structural pattern recognizers. As ar-
chitectural clues we use method types — a classification
of methods based on their semantic role, library classes,
as well as seven GoF design patterns: Template method,
Abstract factory, Strategy, Composite, Proxy, Adapter and
Facade.

According to their semantic role, methods are classi-
fied based on three criteria: Kind (Abstract, Constructor,
Constant, Empty, Accessor, Template, Factory, Delegat-
ing, Alias, Normal), Inheritance Statute (Implementing,
Extending, Overriding, Adding, New) and Usage (Initial-
ization, Public Interface, Protected Interface, Implementa-
tion).

Detection of library classes followed by coupling adap-
tation is our solution to the problem of omnipresent entities
faced by other clustering approaches. We recognize library
classes based on the number of clients that use them.

Recognizing design patterns can provide invaluable in-
formation about subsystem structure. Their presence usu-
ally points to a group of classes that belong together. For
example, the presence of a Composite shows a strong
coupling between the composite class and the aggregated
component class.

In the Couplings adaptation phase, the annotated
source model is reduced to a multigraph structure hav-
ing classes as nodes and coupling metrics as edge values.
For each of the syntactic interactions extracted in the first
phase, a specific coupling metric is computed to show the
strength of that particular type of interaction. Architec-
tural clues are used to put each interaction in a wider con-
text and adapt its corresponding metric value according to
its semantic role in that context. There are six types of
couplings that we consider: Inheritance coupling, Aggre-
gation coupling, Association coupling, Access coupling,
Call coupling and Indirect coupling. Following our previ-
ous example, the presence of a Composite pattern results
in higher coupling metric values for the inheritance, ag-
gregation as well as all the delegating calls between the
composite class and the aggregated component class.

Indirect coupling expresses the coupling given by com-
mon usage. If two classes are constantly used together, it
is likely that they are somewhat related even if no other
direct relationship exists between them. To determine if



two classes are used together, we consider only the calls to
their public methods. If a method body contains calls to
methods belonging to several classes, then between each
pair of called classes, there is an indirect coupling.

Using indirect coupling was already suggested in the
literature2, however it has not been exploited yet. We
have found that indirect coupling is especially effective in
grouping library classes together.

In the Compaction phase, the multigraph structure is
reduced to a simple undirected graph. First we compute
a weighted sum of the above mentioned couplings which
we call directed similarity and then assign the maximum
of the two directed similarities to the resulting undirected
edge of the graph.

In the last phase, the undirected graph is clustered using
a two-pass MST-like clustering algorithm to produce the
final subsystem decomposition.

Further details can be found in [1].

3 Evaluation

We have developed an evaluation environment called ACT
(Adaptive Clustering Testbed). ACT was written in Java,
on top of MeMoJ and using RECODER3 as fact extractor.
Using ACT, we have made a comparative study of both
the architecture-aware adaptive clustering technique and a
conventional non-adaptive clustering technique.

The comparative study is based on two criteria: Accu-
racy and Optimality.

A recovered subsystem decomposition is considered ac-
curate if it is “meaningful” to a software engineer. This
means that the resulting subsystems should contain only
semantically related architectural components and that all
the semantically related architectural components should
be in a single subsystem. We assess both techniques by
comparing their resulting decompositions to specific ref-
erence decompositions (the original package structure and
the ideal CRP structure) using the MoJo metric (see [5]).
Further details and the argumentation for choosing these
particular reference decompositions can be found in [1].

Optimality is measured using two metrics we have de-
fined: average cohesion of the subsystems and average
coupling between the subsystems of a given decomposi-
tion.

We have applied the above mentioned evaluation pro-
cedure on two case studies: the Java AWT library and the
SSHTools project for three different parameters of the clus-
tering algorithm.

For the Java AWT library, measurements show an aver-
age increase in accuracy (decrease of the MoJo value) of
19% for the architecture-aware adaptive clustering tech-
nique when comparing the decompositions to the original
package structure and an average increase of 57% when
comparing them to the ideal CRP structure. The average
cohesion of the subsystems increased by 12% in the case

2A similar idea was proposed by Koschke in [2]
3RECODER is an open source Java framework for source code meta-

programming jointly developed at FZI Forschungszentrum Informatik
Karlsruhe and the University of Karlsruhe.

of our approach. As for the average coupling values, they
were slightly higher for our approach in 2 out of 3 experi-
ments, but this is due to the fact that the non-adaptive ap-
proach created a much smaller number of large clusters
thus turning many of the inter-cluster dependencies into
intra-cluster dependencies.

In the case of the SSHTools project, the measurements
revealed exactly the same thing as the ones made on the
AWT library. The MoJo values show an average increase
in accuracy for our approach of 23% when comparing the
decompositions with the original package structure and an
increase of 64% when comparing the decompositions with
the ideal CRP structure. In the case of architecture-aware
adaptive clustering, the optimality measurements show an
average increase of 3% of the average cohesion metric and
an average decrease of 10% of the average coupling met-
ric.

The results presented in this section clearly show that
architecture-aware clustering provides significantly better
results than non-adaptive techniques both in terms of opti-
mality and especially accuracy.

4 Conclusion

Our paper contributes to the software architecture recovery
research by combining the strengths of clustering-based
and pattern-based techniques. It proposes an approach
which benefits from architectural clues that may be seen
as traces of the high-level design of a system, the original
software developers had in mind in early days of the sys-
tem’s life span. These clues are used to guide an adaptive
clustering process to recover that architecture.

Additionally, we have introduced a new indirect cou-
pling metric for measuring the strength of coupling given
by common usage and, to our knowledge, we are the first to
use it to effectively cluster together library code, thus pro-
viding an elegant solution to the problem of omnipresent
entities encountered in other clustering approaches.

We feel that our results of using architecture-aware
adaptive clustering are very encouraging and we believe
that further research in that direction is fully justified.

References
[1] M. Bauer and M. Trifu. Architecture-aware adaptive clus-

tering of OO systems. In Proceedings of the Eighth CSMR,
pages 3–14. IEEE, 2004.

[2] R. Koschke. Atomic Architectural Component Recovery for
Program Understanding and Evolution. PhD thesis, Institute
of Informatics, University of Stuttgart, Oct 1999.

[3] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R.
Gansner. Using automatic clustering to produce high-level
system organizations of source code. In Proceedings of the
Sixth IWPC, pages 45–52. IEEE, 1998.

[4] K. Sartipi and K. Kontogiannis. A graph pattern matching
approach to software architecture recovery. In Proceedings
of the ICSM, pages 408–419. IEEE, 2001.

[5] V. Tzerpos and R. C. Holt. Mojo: A distance metric for soft-
ware clustering. In Proceedings of the Sixth WCRE, pages
187–193. IEEE, 1999.


